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Abstract  

The author obtains the fundamental aspects of relativistic fluid dynamics in a non- 
vacuum r~gime. As the basic model is taken the special theory of relativity in the form 
proposed by Einstein (1907), Fock (1955) and others. The model takes account of the 
influence of the gravitational field upon the velocity of the propagation of light. 

Introduction 

The relativistic theory of fluid dynamics was constructed in the past by 
a few writers, notably by Taub (1948) and others. The characteristic feature 
of those formulations is that they are based upon the special theory of 
relativity with the reference velocity equal to the velocity of the propagation 
of light in vacuo. But; in practice, the light in the interplanetary or even 
interstellar r6gime is subject to the action of the gravitational field and 
consequently the velocity of its propagation is smaller than that in vacuo. 
If  the light is used as the tested and measured signal, some corrections 
should be introduced to take account of the influence of the gravitational 
field. The model of the special theory of relativity with the action of the 
gravitational field taken into account, as proposed by Einstein (1907), 
Fock (1955) and others, is the basic model in the present work. In the first 
sections there is derived the theory of relativistic fluid dynamics not in a 
vacuum, based primarily upon the model of Taub. The use of the constant 
velocity of light in a medium and of the local (contact) spatial coordinate 
system enables one to present the final expressions for the motion of a fluid 
and for the normal shock relations in a form directly reducible to Taub's 
equations. In the next section there are derived equations of motion and 
shock relations in the Riemannian space to demonstrate what kind of 
simplifications have to be introduced to reduce the formalism to that in the 
(local) Euclidean space. The equations in the Riemannian space were not 
treated, due to the extreme difficulties. A hypothetical example, demonstrat- 
ing the influence of the action of the gravitational field upon the normal 
shock relations in the relativistic fluid dynamics not in a vacuum, is dealt 
with at the end of the work. 

t The research was sponsored by the Research Department, Michigan State University, 
under the directorship of Mr. John Hoffman, and this is gratefully acknowledged. 
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1. Fundamental Aspects o f  the Relativistic Models 

1.1. Relativistic Models 

In 1905 Einstein proposed his first model of the special theory of relativity 
involving the velocity of the propagation of light in vacuo (Einstein, 1905). 
This model, as is well known, is an idealistic model since in vacuo nothing, 
not even a light, can exist. Two years later (Einstein, 1907) he proposed his 
second relativistic model involving the effect of the gravitational field and 
derived the formula for the metric of the space-time in the form: 

dx 2 + dy z + dz 2 = [c(1 + ~c-2)]2dt2 (1.1.1) 

q~ being the gravitational potential. Bateman (1910) derived the general 
infinitesimal spherical wave transformation equations of the form: 

X' = X + r  2 _ y 2  _ Z 2 _~ t 2) + 2qxy + 2rxz + 2sxt + IXX 

+ hy + g z +  It + a] (1.1.2) 

where all the coefficients are constant, e ,~ I, and terms containing e2 are 
neglected. After some manipulations, with y = - 2 e  denoting a constant 
acceleration of a point moving along a straight line, Bateman obtains 
equations: 

x" = x - - � 8 9  + z 2 - x 2 - t 2 ) ;  y' =y( l  +~,x) (1.1.3) 

z ' = z ( 1  + ~,x); t' =t(1 +~,x) (1.1.4) 

which agree with those obtained by Einstein in 1907. One should keep in 
mind that Bateman does not require that the velocity of the propagation of 
signals refers to the velocity of the propagation of light in vacuo, but to the 
propagation in any homogenous or heterogenous medium. But, analo- 
gously to Einstein and Taub, Bateman does not mention that the velocity 
of light in media, mentioned above, is necessarily equal to the velocity of 
light in vaeuo. 

One may mention Whitehead's intuitive theory involving mass impetus, 
electromagnetic impetus and the total impetus. The critical velocity does 
not refer to the velocity of light but merely expresses the fact that a lapse 
of time and a stretch of spatial route can be congruent to each other. From 
the formalism of Lorentz transformations it is evident that they are valid 
for any arbitrary constant reference velocity different from the velocity of 
the propagation of light in vaeuo. In 1951 Rosen (1952) put forward his 
idea of c,-relativities, where any c, = constant may be chosen as a reference 
velocity in Lorentz transformations. Fock (1955) proposed the following 
forms of the four-dimensional space-time metric: 

ds 2 = (c  2 - 2 U )  dt 2 - (dx z + dy z + dz 2) (1.1.5) 
o r  

d s 2 = ( c 2 -  2 V ) d t 2 - ( 1  - 2Uc-2)(dx~ + dy2 + dz 2) (1.1.6) 
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with U-= ~. In 1960 the author1- applied a space-time metric of the form 

ds  2 = (dx  2 + dy  2 + dz 2) - c2(x, y , z ) d t  2 (1,1,7) 

with c < velocity of light in vacuo,  to investigate approximate transforma- 
tion formulas between {x} and {x,}, and the mass-energy relation. The 
latter one is uneffected by the fact that c is a position function. In a series 
of his paperst in the years 1961-65 the author developed the approach 
to the special theory starting from the energy equation of a nonviscous 
fluid flow in classical Newtonian mechanics (Bernoulli's equation), resulting 
in the following form for the space-time metric: 

ds 2 = (dx  2 § dy  2 § dz  2) - I2  dt  2 (1.1.8) 

/ 2  stands for 12 = 2(�89 = potential energy injected into or ejected from the 
system, work of the external forces, etc.).~ This may be considered to be 
the most general form of the space-time metric in the remodelled special 
theory of relativity. There are physicists who oppose calling the above model 
of the theory of relativity by the name of the special theory of relativity.w 
We shall use the nomenclature: the classical and the remodelled special 
theory of relativity. In the present work we assume a metric for the four- 
dimensional space-time {2} in the form: 

- d s  2 = ajk d 2  j d2  k - c -2 I2(dx4)  2 = de o d 2  ~ d2  ~ (1.1.9) 

1~11 = (122 = a33 = 1; d44 = - - e - 2 1 2 ,  a~0 = 0 for ~rCO (1.1.10) 

and 2 4 = et. Throughout the work the Latin indexes take up the values I, 
2, 3, and the Greek indexes the values 1 to 4. The contravariant components 
of the metric tensor, a ~o, in a~Od2~d2o, are: 

t~ 11 = t222 = ti33 = 1; t~44 = - - e 2 I - 2 ;  a ~ o = 0 f o r  e # O  (1.1.11) 

From (1.1.9) we obtain a formula which will be used below: 

d t / d s =  [I(1 _q2i-2)i/2]-1; ~ j = d 2 J / d t ;  c]2=ajkqJq k (1.1.12) 

There is more than one reason for the necessity of the derivation of the 
relativistic formulas in various fields like hydrodynamics when the reference 
velocity of signals is less than the velocity of light in vacuo.  Firstly, the 
velocity of light is not really a constant. It depends upon the intensity of the 
gravitational field, as Einstein had demonstrated. Second, the velocity of 

t Krzywoblocki, v. M. Z. 1. On the General Form of the Special Theory of Relativity. 
I, II, III, IV. Acta physiea austriaca, Vol. 13, No. 4, 387-394 (1960); Vol. 14, No. 1, 
22-28 and 39-49 (1961); Vol. 14, No. 2, 239-241 (1961). 

2. Special Relativity--A Particular Energy Formulation in Newtonian Mechanics ? 
I, II. Actaphysica austriaca, Vol. 15, No. 3, pp. 201-212 and 251-261 (1962). 

3. On the Fundamentals  of the Relativistic Theories. Acta physica austriaca, Vol. 15, 
No. 4,320-336 (1962). 

:~ Various models of the special theory of relativity are constructed by Moiler (1952). 
w Bondi (Trautmann et al., 1964) states that:  ' I t  is occasionally asserted that  as soon as 

we have acceleration then we cannot work with special relativity. This is quite untrue . . . .  '. 
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the propagation of the light in a medium is given by v = en -~, where c is 
the velocity of light in vacuo, n is the ratio of the velocity of light in empty 
space to the velocity, v, in the medium in question and n is called the index 
of refraction. Some works on physics give the value of n for electromagnetic 
waves as (~//~),/2, where e is the dielectric coefficient (not necessarily a 
constant) and/~ is the magnetic permeability. 

The velocity of propagation of electromagnetic waves depends on 
several phenomena, and parameters like diffraction, refraction, dispersion, 
variable index of refraction, variable dielectric coefficient, and so on. 

1.2. Relativistic Mechanics o f  a Mass  Point 

Using (1.1.9) we obtain the contravariant four-velocity vector and its 
covariant and contravariant components: 

~a=d2a/ds;  2J =~J/3- ' ;  /3= [I(1 - c]2I-2) '/2] (1.2.1) 

24 = g14/3-1 ; (14 = d24/dt = c; 2~ = ~7~0 2P (1.2.2) 

The magnitude of the four-velocity vector is: 

a~o 2~i~ = -1 and 2. ~2~/3s = 0 (1.2.3) 

since the absolute derivative of the metric tensor is equal to zero. The 
symbol ~/Ss denotes the absolute derivative. Let us introduce the 
Lagrangian, 5r and calculate the four-momentum vector: 

= �89 c2aao2a2P; Pa = 0 ~ / 0 2 "  = mo e2actp2 O (1.2.4) 

where mo denotes the mass at rest. Using (1.1.10) and (1.2.1) in (1.2.4) 
gives: 

P1 = cmo(c-'  f l)-i  q j; if4 = - m o ( c - '  f l)- '  1 2 (1.2.5) 

With 21~ denoting the inertial relativistic mass we get: 

2~I = mo(e -1/3)-';  _Pj = cA#j; -P4 = -]ffII2 (1.2.6) 

P~ = tTJ~P~ = m0 c2U = c)l~r~1 (1.2.7) 

/~4  = l~4o'po. = d44_~4 = j~fc  2 (1.2.8) 

The standard tensor calculus gives the formulae for the absolute derivatives: 

6 T ~ / 3 s = d T ~ / d s + { C r } T " d x V / d s ,  etc. (1.2.9) 
/xv 

which lead to the contravariant four-force vector components: 

f ~  = 3P/8s; Fj(X) = [dPi/dt + }aj~(e-2 I2),k p4  e] dt/ds 

FJ(X) = (c- '/3)- ' FJ(2); lVJ(~) = d/at (iffIdl J) + �89 ik ffI(I2),k 

= 

(1.2.1o) 

(1.2.11) 
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and the covariant  components :  

Fj(~) = ~/~, F~(g) = (c -1/3)- '  F~(~); Fj(~) = 8/3t (Ylqj )  (1.2.12) 

F4(2) = ~/4" F,(~?) = /3 - '  c 2 I - 2 d / d t ( Y l I  2) = 13-' F4(2) (1.2.13) 

F40Z) = 13-1 F40Z) = - p - '  [d/dt(YlI2)] (1.2.14) 

F r o m  (1.2.3)5, (1.2.4)5 and (1.2.10)1, and then using (1.2.1)5, (1.2.11) and 
(1.2.14), we obtain:  

~*Fo(2)  = 0 or qJFj (2 )  = d/dt()9iI  2) (1.2.15) 

Defining the real energy of  a particle by ~*, we get using (1.2.6)3 : 

~* = )1~I2 ; if4 = --~* (1 .2 .16)  

Defining the total relative energy by ~t*, using (1.2.8) and (1.2.16)5, we 
obtain the maximum energy a particle may possess: 

~t* = p 4  = _ _ C 2 1 - 2 f f 4  = C 2 1 - 2  ~* = l~'ie 2 (1.2.17) 

1.3. Local  Coordinates 

To avoid the operations in the Riemannian space-time we propose the 
local coordinates with the metric of  the corresponding space-time of  the 
form:  

- ( d s )  2 = #oody ~ dfi o = ~jgd.gJ cly k - Io2 dt 2 (1.3.1) 

where the subscript zero denotes the value of  I at a certain particular point  
'0'. When Io is constant  in a relatively small but  a finite domain  around 
the point  '0', the coefficients in (1.3.1) are constant,  since gjk = 1 f o r j  = k, 
gig = 0 f o r j  # k. The four-velocity vector has the components :  

~ = dfia/ds = (dfia/dt) (dt/ds) ; ~J = ~J/3; 1 (1.3.2) 

131 = [Io(1 - /~2i~2)1/2] ; ~4 = (C-I t31)-1 (1.3.3) 

dt/ds = [31 ; (;J = d y / d t ;  (#)2 = g~k g~ ~k (1.3.4) 

All the formulas in Section 1.2 in the {2}-space are t ransformable directly 
into the corresponding formulae in the {y}-space, when the following rules 
and t ransformations are preserved: 

J~'/I-+ f f l =  mo(C-1131)  -1 , qJ --+ vJ; I--->Io; Pj -+p j  (1.3.5): 

/~j(.~) ____>_ /L~j(.~) ; p 4  ___>. p4 = n-~c 2, etc.  (1 .3 .6)  

1.4. Second  Form o f  the Four-Dimensional  Space-T ime  

Let us describe a 'world point '  in terms of  three space coordinates {x j} 
and time t --- x 4. The corresponding metric is: 

- (d 'r )  2 = aoo dx  ~ dxP = a i k d x J d x  k - c - 2 1 2 ( d x 4 ) 2 ;  dr  = c -1 ds (1.4.1) 

ajk = c -2 f o r j  = k;  a44 = - -C-212;  aap = 0 for a # p (1.4.2) 
11 
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Four-velocity: 

z ~ = dx~/d.r; 

Four-momentum:  

M. Z. V. KRZYWOBLOCKI 

z J = qJ(c - ' /32) - ' ;  /32 = [I(1 - q2 i-2),/21 (1.4.3) 

q i  = dxX/dt; z4 = ( c-I/32)-' (1.4.4) 

P j  = mo c2 z j  = c2 M q j ;  

PJ  = mo c2z  j = c2 MqJ;  

Four-force: 

G ( x )  = 3Po/&~ = mo c 2 ~zd~-;  Fj(x) = (c-'  /32) -1Fj(x)  

Fj(x)  = c 2 3 /3 t (Mqj )  = cZ[d/dt(Mq;) + �89 

F4(X ) = (C -1/32) -1 .F4(X) ; -J~4(X) = - d / d t ( M I  2) 
Energy: 

qJ FAx)  = d / d t ( M I  2) = &*~dr 

qj FJ(x)  = c - 2 1 2  f f4(x)  ; f f4(x)  = c 2 1 - 2  d/dt ( M / z )  

The following expression is required later. 

3zJ/3t = dzJ/dt + {m31 MakJ(e -2 I2),  k 

Similar formulae in the (y}-space-time are: 

-d'r2 = goodY ~ dY ~ dy 4 = dt ; 

g44 = --C-2 I02 

with g~p = 0 for a # p. The four-velocity: 

~a = dya/d.c; ~J = vJ(c-'  f l3)- ' ;  v j = d f / d t  

/33 : [/o(1 - V 2 1 0 2 ) ' / 2 ] ;  (4 = (C-I/~3)-1 

The four-momentum: 

p j = mo c 2 ~ j = t22 mv j ; 

p 4  = m c  2 = ~t*(Y);  

The four-force: 

Fo(y)  = dpo/d'r = mo c 2 d~/d-r  ; 

F j ( y )  = c 2 d/dr(my j);  F4(y ) = (c-'/33)-'  F4(Y); 

P 4  = - M 1 2 ;  M = mo(c -1/32) -l (1.4.5) 

p 4  = M c  2 = r  (1.4.6) 

(1.4.7) 

(1.4.8) 

(1.4.9) 

(1.4.10) 

(1.4.11) 

The energy: 
v J F j ( y )  = d/dt(mlo 2) = dz*(y) /d t  

vj P ( y )  = c -212 fig(y) ; 

(1.4.12) 

g l l  = g22 = g33 = C-2; 

(1.4.13) 

(1.4.14) 

(1.4. l 5) 

P4 = - m l o  2 = -z*(Y) (1.4.16) 

m = m o ( e  - i  133) -1 (1.4.17) 

FAy)  = (c - ' / 33 ) - ' -G(y )  (1.4.18) 

F4 = -a /d t (mIo  2) 

(1.4.19) 

(1.4.20) 

p4(y) = c21~2d/dt(mio 2) (1.4.21) 
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1.5. Transformation o f  Coordinates 

Let us introduce t ransformation of  coordinates x +-+ X, y +-+ Y: 

X j = c - l x J ;  X 4 = x 4 = t'~ d"r z = - A ~ o d X ~ d X  p (1.5.1) 

Ajk = 1 f o r j  = k;  A44 = - c - 2 1 2 ;  Aap = 0 for cr # p (1.5.2) 

The velocity and the force vectors are: 

V J ( X ) = d X J / d ' r = e - l z J ;  V 4 = d X 4 / d ' r = c I - X ( 1  +z2c -2 )  1/2 (1.5.3) 

Vj (X)  = czj; IV(X)]  2 = Ajk VJ(X)  Vk(X);  A~o V ~ VP = - 1  (1.5.4) 

FJ( X )  = 3/~-(m0 c 2 VJ( X))  = c -I  FJ(x) (1.5.5) 

F i ( X )  = c -1FJ(x);  F j (X)  = cFj(x) (1.5.6) 

In  the local or thogonal  Y-coordinates: 

y~ = c-Xyj;  y4 = y 4  = t; -d 'r  2 = G ~ o d Y r  p - c-2Io2(dy4) 2 

(1.5.7) 

Gjk = 1 for j = k ;  

V~( Y)  = dYJ/d-c = c-1 ~J ; 

V j ( Y )  = c~i; (V(Y))  2 = G~k VJ(Y)  V k ( y ) ;  

F J ( y )  = c-1FJ(y) ;  F J ( y )  = c-l  ff i(y);  

G44 = - c - 2 1 0 2 ;  Gap = 0 for r # p (1.5.8 

V4(Y) = d y4/d'r = cI-61 [1 + (V( y))211/2 

(1.5.9) 

Gop V ~ VP(Y) = - 1  

(1.5.10) 

F j ( Y )  = cFj(y)  (1.5.11) 

2. Relativistic Fluid Dynamics In the Non-Vacuum Rdgime 

2.1. Fundamental Equations 

The relativistic Rankine-Hugonio t  equations in a flat space with the 
reference velocity equal to the velocity of  light in vaeuo were derived by 
Taub  (1948). In  the present work  we derive the relativistic hydrodynamic  
equations in the non-vacuum r6gime. In  order to avoid dealing with the 
curvilinear Riemannian  spaces, we introduce the local orthogonal ,  y~, 
coordinates,  discussed above. The r andom velocity components ,  v J, are 
measured with respect to the fixed system {y). The mot ion  of  the fluid 
considered as a collection o f  particles of  the rest mass m0 is described in 
terms of:  

~J=vJ(c- l l~3)- I ;  v S = c - l l o ~ S ( 1  -Jff c-2 ~2) -1/2 (2.1.1) 

c - 2 ~  2 = gsk ~:J ~:k; v2c -2 =gskvSv  k (2.1.2) 

with g~k = e -z f o r j  = k and gjk = 0 f o r j  ~ k, where v j are the components  
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of the velocity of a particle. Let us introduce the distribution function 
(y,  r t) with the Boltzmann equation: 

Df =- ~ +  vs ~fy + J s -~s=  Ae f (2.1.3) 

or using (2.1.1) : 

Of -i ~ . Of = Ae f (2.1.4) D f = ~ + e  ses(1 + ~:z c-e) -1/2 + ~ ' s  

where o ~ s - -  m61c-2FS(y) denotes the external force per unit mass and 
Aef  is the time rate of change in f due to encounters between particles. 
Beginning from this point we may apply precisely the procedure used by 
Taub with the corresponding changes due to the fact that we operate in a 
non-vacuum rrgime. 

Multiply (2.1.4) by any transport quantity ~ ( y ,  ~s, t), integrate over the 
entire volume of the {~:S)-space, apply the integration by parts with the 
mean values of 4, n. (~b), defined by: 

n.<f>= f @f d3 ; f f (2.1.5) 

and apply the notion of the summation invariants i.e., there are some 
functions, 7I, characterized by conservation properties during encounters 
in the sense that: 

f~q.Aef.d3~=O; q = 0, 1,2,3,4 (2.1.6) 

~ o  = mo; 7_ts = mo ~:s; ~4  = E = total energy of a particle (2.1.7) 

E = ct*(Y) = p 4  = me 2 = c2mo(ci-~x) (1 + ~2 r (2.1.8) 

To obtain the law of conservation of mass we introduce the mass current 
four-vector: 

v ~ = f  V~dtz; d/~ = (1 + c-2 ~2)-l/2. f .d3 ~ (2.1.9) 

where V ~ is given in (1.5.9), and insert W 0 into the transformed f ~o. Df. d 3 ~, 
thus obtaining: 

mo U~{~, = 0 (2.1.10) 

Introducing the average velocity: 

as= n -l f vS.f.d3 ~; (a) 2 = GjkaJa k (2.1.11) 

and making use of (2.1.5) and (2.1.9), we obtain: 

1~ 2/342 = (1 - (a) 2 I6 z) =-n  -2 U ~ U~ (2. I .  12) 

Define the relativistic number density n o as measured by an observer 
moving with velocity a s with respect to the fixed coordinates, ys: 

n o = n2(1 - (a)2I~ 2) = - U  ~' U~; po = nOmo (2.1.13) 
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With a dimensionless velocity u s = Us/n ~ we get from (2.1.13) and (2.1.10), 
respectively: 

u = u ~ = - l ;  (p~ = 0  (2.1.14) 

another form of the law of the conservation of mass. 
To obtain the laws of conservation of momentum and energy we use 

34 instead of 33 in (1.4.18) to derive the formula for the force per unit mass 
in the { Y}-system, ~ , s ( y ) :  

~ , s ( y )  = m-d1 c[3~lFS(y); vsFS(Y)  = c - 2 I o 2 1 y 4 ( Y )  (2.1.15) 

expressing v s in terms of ~s, taking mean values and using (2.1.11) and 
(2.1.15) 1 gives: 

nFS( Y)  s s = e - 2  Io z n(F4(Y)) (2.1.16) 

~ ; * J l Y t j  = C-2102 ~ - ' 4 ;  ~ , 4  = m~l cf341(F4(y)) (2.1.17) 

Starting from the functional j" FS(Y)  Vsdt~, using (1.5.10), the definition of 
the mean value, (2.1.5) and (2.1.9) and some operations, we obtain: 

F J(Y) Uj -q- ( /~4 )  U4 = 0 or ~ *  ~ u~ = 0 (2.1.18) 

The functional below (2.1.17) with the use of (2.1.13) and (2.1.17)2, is equa 1 
to c-2Io2n~ ~ . 4 .  Using (2.1.7) and (2.1.8), transformation of coordinates 
(1,5.7), (2.1.15) and (2.1.17)2, and the last expression for the functional, 
after some transformations, we get the equation for the energy-momentum 
tensor: 

T~/3lg = p~ ~ * ~ ;  T ~ ' ~ = m o c 2 f  V~V~dtz  (2.1.19) 

We may combine both sides of (2.1.19)1 introducing a new tensor for the 
external forces 5 *=: 

p~ o~*~ = H~/3[g; T * ~ = T ~ - H ~ ;  T*=~I~ = 0 (2.1.20) 

2.2. Characteristic Properties 

Certain aspects of the present approach are identical to those derived by 
Taub (1948); thus the specific internal energy per unit mass, ~, is defined 
in the { Y}-system with the use of (2.1.13) from the equation: 

mo2(p~ -2 T ~  U ~ U~ = T ~  u ~ u ~ = p~ + ~) (2.2.1) 

where T~/3 is the covariant tensor associated with the contravariant tensor 
(2.1.19). The internal energy per unit mass of the fluid is a function of the 
pressure and the rest density. Taub (1948) derived a lower bound for 
in the { Y)-space-time coordinates: 

>1 3p(pO)-i + c2{[1 + 9(pc-2(pO))2]l/2 _ 1} (2.2.2) 

The inequality (2.2.2) imposes a restriction on the possible kinds of function 
e(p, p0) in the relativistic kinetic theory of gases in contradiction to the 
macroscopic theory, where E may be any function o fp  and p0. It is valid 
in the present case. 
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2.3. Rankine-Hugoniot Equations 

We consider the mot ion  of  a perfect gas subject to no external forces. 
Following Taub (1948) we assume in the { Y}-space-time the forms [see 
(2.1.20)1: 

T ~ = p ~  +c-2(~ +p(p~ + p G ~ ,  1] ~ =  (.7o G ~  (2.3.1) 

where p denotes the static pressure, and U0 [see (1.1.5)] the value of  the 
gravitational potential  at a certain point  '0'. F r o m  this we get: 

T * ~ = p ~  +c-2(~ +p(p~ + ( p  - Uo)G~ (2.3.2) 

with (2.1.20)3 and (2.1.14)2 retaining their validity. Due to the fact that  U is 
assumed to be a piece-wise (point-wise) constant  function, i.e., Uo = con- 
stant, the present flow reduces to the flow discussed by Taub (1948), with 
the specific entropy,  S, as measured by an observer at rest with respect to 
the gas, being constant  along a stream-line. 

Let  us consider a one-dimensional  mot ion  in { y l ,  y 4 =  t)-space-time 
and remodel  (2.1.11)1 using (2.1.9)2 and (2.1.12), and the definition of  
u s below (2.1.13): 

~'s = Io(1 - ~t2 Io2)l/Z1,lJ ; U j = ftS I~l(1 - b~2102)-1/2; 

~t 2 = G 3k fit j ~l k (2.3.3) 

With ~1I~1 = u, we get f rom (2.1.14) and (2.3.3)2: 

u I = u(1 - uZ)-a/2; u 2 = u s = 0; u 4 = cI~1(1 - u2) -1/2 (2.3.4) 

Inserting (2.3.4) into (2.1.14)2 and (2.1.20)3 we obtain in the {y}-space-time 
[the t ransformat ion Y +--~ y is given in (1.5.7)], after carrying out the indicated 
differentiation: 

(1 - u 2) [i~1(pO)-1 pO t + u(pO)-I pOt] + i~1 uu,t + u,r = 0 (2.3.5) 

U(1 - -  U 2) [I~1 i~-I i~,t + tz-I  UU,y] + 1-1 u t + uu r + (1 - uZ) 2. 

�9 (p0)-i c-2/~-lp,y = 0 (2.3.6) 

tz = 1 + e-2[~ +p(p0)- l ]  (2.3.7) 

In t roducing auxiliary variables 

= pO ~-1 dlz/dpO; q9 = f o~ 2 O~(pO) -1  dp o (2.3.8) 

equations (2.3.5) and (2.3.6) t ransform into:  

(1 - u 2) [I~ l qLt + u%r] + ~[I~ ~ uut  + u,r] = 0 (2.3.9) 

~(1 - -u2)[uI -~ l%~+%~]+[I-~ lu t+uu,y]=O (2.3.10) 

Addit ion and subtract ion of  (2.3.9) and (2.3.10) yield: 

( 1 - u 2 ) D + q ~ + D + u = O ;  ( 1 - u 2 ) D _ 9 ~ - D _ u = O  (2.3.11) 

D+ = (1 + c~u)I-610/Ot + (o~ + u)O/Oy (2.3.12) 
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Equations (2.3.11) and (2.3.12) are identical to those derived by Taub 
(1948) referring to the velocity of light in a vacuum. Beginning from this 
point both formalisms referring to the velocity of light in a vacuum and 
in a non-vacuum, respectively, are identical, or analogous, i.e., the formalism 
given by Taub (1948) is applicable directly to the present case. In particular: 

(i) The relativistic analogs of the Riemann functions, r, s, which occur 
in the classical theory of the propagation of one-dimensional waves of 
finite amplitude: 

D + r = 0 ;  D_s--O; r,s=cp+_ ln[(l +u)(l-u)-~p/2 (2.3.13) 

(ii) The functions r, s, are constant along the curves, respectively: 

(dy/dt)i, n = +_I0(~ +_ u)(1 + eu) -~ (2.3.14) 

(iii) A disturbance propagates as a progressive wave if either r or s is 
constant. Using this idea and the formalism of Taub (1948) one can derive 
the magnitude of the velocity of the propagation of weak disturbances for 
u --~ 0. It is equal to ~, which may be expressed as aI~ ~, i.e., e is the velocity 
of sound in units where the velocity of the signal, I0, is unity. 

(iv) For a high temperature (p(c2p~ ~ - + ( y - 1 )  1/2, which 
implies that for Y > 2 sound waves should propagate with a velocity 
greater than Io, which would be impossible. The relativistic Rankine- 
Hugoniot equations derived by Taub (1948) remain valid in the present 
case. The variables po, u ~, p, e,/~ are subject to jump discontinuities with 
I0, U0 remaining constant. Let the Yt-axis be perpendicular to the normal 
shock. 

Mass: p+~ - u+2) -1/2 - p_~ u_(1 - u_2) -1/2 = M (2.3.15) 

(from) Momentum: 

M = c-l{(p+ - p _ )  [/z_ .(p o)-1 _/~.(p+o)- l ]- l}l j2  (2.3.16) 

Energy: m 2 c2(/z+ 2 - / ~ 2 )  = MZ(p+ _ p_) [r +/~ (O o)-I] (2.3.17) 

Assume that the gaseous medium moves from right to left across a normal, 
fixed shock. Variables on the right-hand side of the shock are denoted by 
subscript (-) ,  whereas those on the left-hand side are denoted by subscript 
(+). Introduce the quantities: 

~: =p+(p_)-I  ; ~/= p+O(p_O)-I ; fl = y+(y+ _ 1)-1 c-Zp_(pO)-i 

(2.3.18) 

which when inserted into (2.3.7) with the use of the relativistic definition of 
the internal energy per unit mass s = (y - 1)-~p(p0)-~, give: 

/z+ = 1 + ~ / - ~ ;  /~_ = 1 + (~,_) (9/+)-' (y+ - 1) (y_ - 1) -l  fl (2.3.19) 

Following Taub (1948) assume 9'+ to be a constant. (2.3.17) then takes the 
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following form,  with y+ = y _ , / z  = 1 +/3, f rom (2.2.2), e > 0, ~/> y+ > 1 : 

fir/-1 = {R - [(y+ + 1)~: + (y+ - 1)]} {2~:[~: + (y+ - 1)]} -1 (2.3.20) 

R = {(y+ - 1)1(~: - 1)+ 2 4~:(~ + 9'+ - 1)[y+/z_ 2 +/3tz_@+ - 1)(~ - 1)1} I/2 

(2.3.21) 
A combina t ion  of  (2.3.15) and (2.3.16) gives: 

u_(l - / / _ 2 )  - 1 / 2 =  [ 0 / + -  1 ) / 3 ( ~ -  1)] 1/2 [ y + ( / z _ - / z +  97~1)] -1/2 (2.3.22) 

Suppose we wish to have a system in which the med ium on the r ight-hand 
side of  the shock is at  rest and  the shock moves into it. To  achieve this we 
m a y  super impose  upon  the entire medium-shock-sys tem the velocity of  
the magni tude  ~7_ ~ f rom left to right. The  med ium on the r ight-hand side 
will be at rest and the velocity of  the shock will be zT_ 1. 

A t rans format ion  f rom the { Y}-space-time in the present  work,  with the 
Io reference velocity to the { Y'}-space-time given by Taub  (1948) with the 
c-reference velocity is o f  the fo rm:  

y , j  = ys'; y,4 = c-1 Io [y4 (2.3.23) 

The  relations between variables in the bo th  reference f rames are presented 
in Tables  1 and 2. The variables p0, p, ~, ~ are invar iant  under  (2.3.23) since 

TABLE 2. Relation between variables in ( Y,)- and ( Y)-space-times 

U = ~ ;  V , J =  VJ; V , 4 = c - 1 I o  V 4 

U,J= UJ; U,4=c-110 U 4 

ft ,J = c I 6 1  ~J  

U ' ~ b /  

F/" = /'/ 

/,/,0 = /20 

U,J=blJ; U,4 =r Io u4 
p,O = pO 

p ' = p  

~ , ~  

tZ, = lZ 

a" = c I ~  1 a 

u _ '  = u _  ; Yr_ 1 = C lo  f t -  1 
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the factors (1 - u '2) ~/2 and (1 - u z) ~/2 are equal and the distribution function 
f ( Y J ,  seJ, t) is also invariant under (2.3.23). Formally, only t~• 1 and a are 
effected by introducing Io in place of c. The transformation due to the 
superimposing the velocity ~7_ ~, {Y*)-+ {Y), is of the Lorentz type: 

y * l  = { y l  _ c - I / ~  1 t )  (1 - (/~_1)2102)-1/2; y * 2  = y 2 ;  

y * 3  = y 3 ;  t *  = ( t  - / ~  I d ~ 2  y l ) ( 1  - -  (/~ 1)2i~2)-1/2 

which leave (d-r) 2 invariant. The velocity ~_~ is considered to be momen- 
tarily (piece-wise) constant for the above transformation to be valid. In 
the final forms of equations the star in Y*~ is omitted. 

3. Relativistic Hydrodynamic Equations in Riemannian Space-Time 

3.1. Introductory Remarks 

In this section we derive the relativistic hydrodynamical equations in the 
Riemannian space-time {x) with the reference velocity I =  I(xO. We 
operate in a system of curvilinear coordinates (xJ'), embedded in the (x) 
space-t/me. We shall investigate the relation between the forms of hydro- 
dynamic equations in both Euclidean and Riemannian space. 

3.2. Boltzmann Equation 

We begin with the Boltzmann equation in the Riemannian space-time: 

of af dxJ af d z J _ A e f  
~t + USJ d t  - + ~z J dt 

(3.2.1) 

where f = f  (x i, z j, t), and the symbol d/dt denotes the absolute derivative.t 
From (1.4.3) we calculate qJ in terms of z J: 

qJ = c -I IzJ(l + c-2z2)-1/2; r = ajkZJZ g (3.2.2) 

From (1.4.12) with ~zJ/~t = c-2m~ 1Fi(x) one obtains: 

dzi/dt = c -2 m~ ~ {FJ(x) - �89 (3.2.3) 

which inserted into (3.2.1) with dxJ/dt = q J, gives: 

D f  = Of/at + c-1IzJ(1 + z2 c-Z)-l/2 Of/Ox J 

+ c -2 m~l[FJ(x) - �89 Of/OzJ = A e f  (3.2.4) 

Multiply (3.2.4) by any transport quantity ~ ( M ,  zJ, t), integrate over the 
entire (zi,zZ, z3)-space, apply integration by parts, with products ( f q 0  
tending to zero for z ~ approaching to + 0% express M i n  terms ofz  2 and i2: 

M =m o  c I - l ( l  - q21-2)-i /2 = mo ci-1(1 + e -z z2) 1/2 (3.2.5) 

One obtains : 

"~ The total (ordinary) derivative of  a scalar is identical to its absolute derivative. 



RELATIVISTIC FLUID DYNAMICS IN A NON-VACUUM REGIME 175 

f q S ( D f )  d3z = (n((/))),t + (c -1 I )  [n((/)zJ. (1 + c-2z2)-'/2)],j 
+ (c -~ I), s [n((DzJ(1 + c -2 z2)-1/2)] 

- {n((/),t) + n([(e -1 I) q)zJ(1 + c-2z2)-1/2],j) 

+ n(c -2 m~ 1 FJ(x) ~ j )  

- n((1 + c-2z2)l/2(Dzj)aJk(c -11),k 
+ n(C -2 m~ 1 (7~gF~j) 

- n(q)zJ(1 + c -2 z2) -1/2) (c -1 I),j) 
f qbAef, d3z (3.2.6) 

To  obtain  the summat iona l  invariants  we insert 

(b = 7Z~ = m0, (/) = ~J (x )  = mo z j, 

(/) = ~4 (x )  = c 2 mo(c1-1) (1 + c -2 z2) 1/2 = Me 2 

The funct ion 7 J ~  m0 = constant ,  gives the law of  the conservat ion of 
mass:  

mo{n,4 + c 1 i[n(zJ(1 + c-2z2)-l/2)],j _~_ ( c - I  i),jn(zJ(1 + c - 2 z  2) 1/2)) 

= c-2n<F]~) (3,2.7) 

With  (1.5.1), and the assumpt ion  that  the forces are independent  of  the 
velocity z J and with I = I(XJ), equat ion (3.2.7) takes the form:  

/T/0 ( c - l l [ f  V 4 d ~ ] , 4  + r  VJd,] , j  + (c - ' l ) , j  f VJdtL} : 0  (3.2.8)  

d/~ = (1 + c-2z2)-1/2fd3z (3.2.9) 

Using the mass  current  vector  Us(X) = S V~(X)d~, we get: 

mo{ UJj + U 4 + �89 (e -2 I2)],i UJ'} = 0 (3.2.10) 
OF 

m0 U~[~ = 0 (3.2.11) 

In t roducing  the average velocity: 

f qJ fdaz ;  ~2=Aj~#J#k  (3.2.12) ~J = n - I  

we calculate:  
1 -- # 2 1 - 2  = --H 2 U ~z U~t (3.2.13) 

We define the number  density measured  by an observer moving with #J 
with respect  to the fixed coordinate  system {Xa): 

(n~ 2 = n2(X) (1 - #21-2)  = _ Us(X) U~(X) (3.2.14) 

with the corresponding density p0 = nOmo. In t roducing the dimensionless 
velocity w ~ =  (nO) - t  U ~, we obtain  f rom (3.2.14), w~w ~ = - 1 ,  and f rom 
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(3.2.11) (p~ = 0, which is another representation of the law of the 
conservation of mass. 

Introducing the force vector we get: 

~*~'=m-dlc1-J(1--~2I-2)-l~2(F~'(X)>; (F~) = / vJ (3.2.15) 

0; f FJ(X) V jdl~ = c-212n~ (3.2.16) ~*~(X)  w~ 

Inserting 7/~ = moz k into (3.2.6), assuming again that P is independent of 
z j and using the transformation (1.5.1), with I = I(XS), gives: 

+(c-212)(c-21).xjmo Aik f V4V4dlz + I.xflno f VJVgdl ~ 

=c- lpmo-lF%X);  p=nmo (3.2.17) 

With T k~ = mo c2 f V k V~dt ~, (3.2.17) becomes: 

Z4k,4 -~ TJ~, " + �89162 -~ �89 TJk 

= p~  = CI61 prn -l irk(X) (3.2.18) 

In an exactly similar way, inserting ~4  into (3.2.6), using {x}-+{X}, 
T 4~ = mo c 2 ,f V 4 V4dl~, we obtain: 

T4j + T 44 ~[ln (c -2 2 T4j _ po ," ,4 + I )],~ - ~*4(X)  (3.2.19) 

which combined with (3.2.18) gives: 

TC'~=rno c2 f V ~ Vl~dtz (3.2.20) 

From pOff,~ = H ~ [ ~  ' T,~/~ = T ~  _/-/~/3, we get: 

T*~/~I~ = 0 (3.2.21) 

The internal energy of the medium per unit mass, e, is expressed by a 
formula similar to that one derived in the Euclidean space: 

T ~  w ~ w/~ = p~ + r (3.2.22) 

Following Taub (1948) we may assume: 

T~/3 = ?o C2[1 + C-2(~ + p(pO)-l)] W ~ W ~ + pA,,~ (3.2.23) 

or with H ~/~ = T A  ~ :  

T , ~  = pOc2[l + c-2(~ +p(p0)-a)] w~,w ~ + (p _ W ) A ~  (3.2.24) 

Insert (3.2.24) into (3.2.21), multiply the result by (-w~), use the result that 
wo, w ~ = -1,  (p~ = O, (3.2.16)~, and obtain: 

{r +p[(po)-~J, tjw~}=d~ +pd[(p~ (3.2.25) 
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with de = e/~w ~, d[(p~ -1] = [(p~ This expresses the first law o f  
the rmodynamics  with the e lementary  energy (heat) input  into the system, 
d Q ,  being equal  to zero. Wi th  S denot ing the specific en t ropy  and 0 the 
absolute  tempera ture ,  we get f rom (3.2.25) 

d Q  = O d S  = d~ + p d[(p~ -~] = 0 

0 

1'00 t .......... 10"20 
0"16 

0"95 

0"90 

0"85 

0"80 I l I .... I ..... t I t I , 
~0 1 2 :3 4 5 6 7 8 9 

Y (one unit of Y=R (0) 

0"12 
N 

0'.08 

0"04 

I 
o 
.-.2. 

Figure 1.--The dimensionless gravitational potential e -2 r and the dimensionless velocity 
c -1 lo(c -~ I)  as functions of the Y-coordinate. 

3.3. O n e - D i m e n s i o n a l  F l o w  

In  ( X  1, X 4 =  t) system of  coordinates  (3.2.12) with U ~ [above (3.2.10)], 
(3.2.14) and  the expression for  w ~ takes the fo rm:  

w 1 = #l  i - l [ 1  _ 0~)2 i -2] -u2;  (~)2 = A s  k ff;Sff~k (3.3.1) 

or  with ~ 1 - 1  = w, we get: 
w I = w(1 - w2) -u2 (3.3.2) 

which inserted into w ~ w  ~ = - 1 ,  gives: 

w 4 = c i - 1 ( 1  - -  w2) - u z  (3.3.3) 
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Obviously, the above equations can be easily expressed in the (x, t)-space- 
time, by the simple t ransformat ion (X) +-+ (x). Inserting (3.3.2), (3.3.3) into 
(po w~)[~ = 0, and expanding, gives in the (x, t)-space-time: 

(1 - w 2) [ I - ' ( p ~  - '  p,o + w(pO)-, pox] + , r - ,  ww,, + w,~ 

= -�89 - w 2) (lnI2),~ (3.3.4) 

Analogously,  inserting the same expression into (3.2.21), expressing o~*~ 
in terms of  the gradient of  71, gives: 

w(1 - w 2) [I - l  F -1F, ,  + wF -a ff ,~] + I -a w,t + WW, x 

+ (1 - w2)(p~ - l  c - 2 F - l p , x  = -�89 - w 2) (InlZ),x + (1 - w2)(p~ -I ff-i W,= 

(3.3.5) 

/z = 1 + c-2[~ +p(pO)-l]  (3.3.6) 

0 5  

0 " 4  -- 

0 '3  

0'2 

0"1 

I T 1 V 
0 1.0 2"0 3"0 

Figure 2.--The dimensionless sound velocity c~ as a function of the normalized density 
pO*. 

Let us introduce auxiliary variables (2.3.8) into (3.3.4) and (3.3.5), giving: 

(1 - w2)(1-1 q~,t + wq~,x) + o~(1-1 ww,~ + w,x) = -�89 - w2) (lnI2),x 
(3.3.7) 

~(1 - w 2 ) ( I  -~ w%, + %~) + (I-' w,, + ww,~) 

= (1 - w 2) [(po)-~ c-2 ff- l ( l  - w 2) 7t,~ - �89 (3.3.8) 
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l.O 

0.8 

"~  0,6 
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0 1"0 2"0 5"0 
pO* 

Figure 3.--The quantity ~ as a function of the normalized density pO, 

0"5 

0.L 

0'~ 

0"2 

0-" 

1 I I 1 
0 0-2 0.4 0-6 0.8 t.0 

Figure 4.--The dimensionless sound velocity ~ as a function of the quantity ~. 
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A d d i n g  a n d  s u b t r a c t i n g  (3.3.7) a n d  (3.3.8) g ives :  

(1 - w 2) D+ ~  ~ + D+ ~  w = L ( ~  (1 - w 2) D_ ~  - D _  ( ~  w = L (2) (3.3.9) 

D+_ = (1 + . w ) I  -~ ~/Ot + ( .  + w)~/Ox (3,3.10) 

0"34 

0.33  

c - t  = 0 . 8 0 0  

0 ' 3 2  

"6- 

O'3~ 

C -t  = 0 ' 9 0 5  

c - t  = 0 ' 9 3 8  

c - ~ 1 . 0 0  

0"30 

0-291 I 1 I .... I I .... ~ \~\ 
0 0 .05  0'10 0.15 0"20 0 ' 25  0 ' 3 0  0 '35  

Y (one unit of Y =  R (0) 

Figure 5.--Solution of equations (2.3.9) and (2.3.10) for ~ at th~part icular  instant 
t = to = 0.4 for different values of the parameter 10 c -1 and the corresponding approximate 

solution for ~ (shown in dashed line) in the range of Y [0,0-325]. 

L el), L (2) = + (1 - w 2) [�89 + ~w) (In 12),x - (p0)-1 c-2 F - I ( 1  _ w 2) W,x] 

(3.3.11) 

T h e  o n e - d i m e n s i o n a l  e q u a t i o n s  in  the  R i e m a n n i a n  space - t ime  de r i ved  in  
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the  present  chapte r  are  reducible  to  fo rmulae  der ived in Sect ion 2.3 by 
set t ing:  I = Io = constant ,  T = W 0 = cons tan t  and  all the derivatives of  I0, 
To equal  to zero. Mathemat ica l ly ,  opera t ing  in the flat space, we find only 

0'275 

0"27C 

Io C i  = I~00-. 

Io c-i  = 095-. .  

Io c-I = 0 '90-.  

0 .260  

0 '255  

o c-~ = 0 '85 

o c-t = 0 ' 8 0  

0'24ff  

0"240 

0 ' 2 5 0 ~ _  f . . . .  I I ,_ I . . . .  
0 0 '05  0'10 0.15 0 '20 0 2 5  0.50 0'55 

Y (one unit of Y = R  (11) 

Figure 6,--Solution of equations (2.3.9) and (2.3.10) for u at the particular instant 
t = t~ = 0-4 for dift'erent values of the parameter I0e -1 and the corresponding approxi- 

mate solution for u (shown in dashed line) in the range of Y= [0,0'35]. 

a so lu t ion  o f  homogeneous  differential  systeln with cons tan t  I0, kg0, 
whereas  in the  R i e m a n n i a n  space we have non-homogeneous  equat ions  
with var iab le  I and  h rs. 

12 
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4. Numerical Example t 

Assume  a hypothe t ica l  celestial  body  with the magni tude  of  the gravi ta-  
t ional  po ten t ia l  on its surface equal  to ~(~) = 8.5 x 104q~s, where ~bs is the 
grav i ta t iona l  po ten t ia l  o f  the sun on its surface, ~bs = 7.34 • 104 msec -2. 
The  velocity o f  the p r o p a g a t i o n  o f  l ight  is c = 1-86272 x 105 msec -L  
The  value o f  2c-2~b (1) equals  to 0.36, c-lI~on = 0.8. The grav i ta t iona l  
po ten t ia l  is ca lcula ted at  poin ts  R (") = nR (n, R (n = radius  of  the celestial  
body.  The  quanti t ies  c-2~b, and  c-11o as funct ions of nR (1~ are shown on 
Fig.  1. 

0"30 

-e- 

022 

0'26 

0"18 

0-14 , I , I , I , I ~ I 
0 1"0 2"0 3"0 4'0 5"0 

Y (one unit of Y = R (0) 

0541  

6.0 7'0 

Figure 7.--Approximate solution of equations (2.3.9) and (2.3.10) for ~ = if(Y,0-4). 
Y at t = 0'4 due to the variations of the parameter 10 c -1 is so small that it cannot be 

shown clearly on this diagram. 

Let  us assume a hypothe t ica l  gas consis t ing only o f  electrons at  a high 
t empera tu re  moving  in the grav i ta t iona l  field o f  the celestial b o d y :  
p(o0)- i  = ~ rn ;10 ,  where ~ = universal  cons tant  = 1545.33 (ft lbf  mole  -~ 
~  rnw = molecu la r  weight of  the gas = (1836) -~ lbm, 0 t empera tu re  in 
degrees Rankine ,  p = pressure ( lbf  ft-2), p0 = densi ty  ( lbm ft-3). We  solve 

t The example was proposed by the author, was set up by Mr. A. E1-Ariny, and 
calculated by Mr. Floyd E. LeCureux (both graduate students in the College of Engineer- 
ing, Michigan State University) on the MSU Control Data 3600 Computer. The diagrams 
were plotted by Mr. E1-Ariny. 
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numer ica l ly  (2.3.9) and  (2.3.10) in the Y-space-time with the ini t ial  
condi t ions :  

u0 = u(0, 0) = 0-2; p0 ~ = p~ 0) = 10 -~5 Ibm ft-3;  

0o = 0(0, 0) = 1-225(109) ~ u = u( Y, t)  (4.1) 

0 "37 

0 '35  

0"33 

0"31 

0 "29  

0"27 

0"25  

0"23  I ....... 1 1 . I 1 I 
0 I 2_ 3 4 5 6 7 

Y (one unit of Y =  R (1)) 

Figure 8.--Approximate solution of equations (2.3.9) and (2.3.10) for u = u(Y,0-4). 
The variation of the curve u as a function of Y at t = 0"4 due to the variations of the 

parameter I0 c -1 is so small that it cannot be shown clearly on this diagram. 

wi th  the origin o f  the Y-coordinate  loca ted  on  the surface o f  the celestial  
body  and :  

u( Y, O) = uo[1 + Y(1 + Y)-~I;  ~ p ( Y , 0 ) = ~ % [ ~ -  Y(1 + Y)-~] (4.2) 

W e  easi ly calculate  the value o f  e-2po(po~ -~ = 0.115, and  f rom (2.2.2) and  
= ( 7 ' - 1 ) - l P ( P ~  -1 we get ~'o ~< 1.614. I t  is assumed th roughou t  this 

sect ion tha t  ~'o = 1.614. Since the gas is assumed to be an isentropic  one, 
we get :  

p = C(p~ ~' and  c -~ C = 1"8676 • 108, ) '  = )'o (4.3) 
12" 



184 M. Z. V. KRZYWOBLOCKI 

The density is normalized with respect to po ~ i.e., pO, = OO(poO)-i" F rom 
Table 1 we calculate ~ as a function o f  pO, (Fig. 2). F r o m  (2.3.8)2 using 
f rom Table 1 with ~ = 0 for Oo, = 0 (see Chernikov, 1962), we may plot  

7"O 

4 ' 0 -  

1.0 .......... ~ ' . .  ~ , 
0.5 0 '4  0.5 0.6 0.7" 

c-~ 5 ~_ 

Figure 9.---The pressure ratio ~ = p  + p ,  i versus the dimensionless shock velocity 
c -~ a_ 1 for different values of the parameter c-11o when c-2p_p ~ = 0"10 and ~, = 1-614. 

3"0 
c2p ooo  

2"5 

XoC- : o.so ~////->< 

0-25 0.55 0.45 0-55 0-65 

e-1 ~I_ 

Figure 10.--The density ratio -q = p+Op~-, versus c-1~_ 1 for different values of the 
parameter c-11o when c-2p_p ~ = 0.10 and 7 = 1'614. 

~o = q~(pO,) (Fig. 3). The quanti ty ~Vo = ~(0,0) in (4.1) is determined f rom 
Fig. 3 for po ~ = 1 (% = 0.354466). F rom Figs. 2 and 3 we get a = a(~) 
(Fig. 4). Figures 5 and 6 represent solutions o f  (2.3.9) and (2.3.10), respec- 
tively, for different constant  parameters I~ taken at a part icular instant, 
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t = to. Only small por t ions  of  these curves are represented on Figs. 5 and 6. 
Using Fig. 1 we determine the posit ions Y =  Y(")= R (") at which the 

values of  the pa ramete r  I0 = I(o ") are chosen. In Figs. 5 and 6 (extended up 
to Y = 7.0) vertical lines are traced for each Y(") so obtained.  Next,  there 
are determined the points  of  intersections of  these vertical lines with the 
corresponding curves drawn for  the corresponding values of  the pa ramete r  
Io = 1(o "). The  curves, passing through these points, Figs. 7 and 8, furnish 
the first approx imate  solutions of  (2.3.9) and (2.3.10), respectively, for  the 
case of  a piece-wise variable reference velocity, Io. Small port ions of  these 
curves are marked  on Figs. 5 and 6, as dashed lines. 

~ +  
1:3 

L 

0 .13  ~ ~ 

,,,iX@ 
0-11 

0-10 

0 " 0 9  

0-08 loC-' = 0.85" " ' ~ ' J / ~ .  
/ z  2 " ~ z  / 

I o  c - t  = 0 . 8 0  / " 

0 ' 0 7  I I I 

c-2 p_ pO-t = 0'10, T = 1-614 

\lot;-- = 1 

;I I I I l 
0.25 0.55 0-45 0.55 0.65 

c-t~1 

Figure 11 .--The dimensionless velocity e -1Li+ ~ on the right side of the shock versus the 
dimensionless velocity c -I ~i_ ~ on the left side of the shock for different values of the 
parameter c-~Io when c-2p_p~ -~ = 0"10 and 7 = 1 '614. Constant pressure ratio lines are 

also shown. 

The  numerical  calculations of  (2.3.15), (2.3.20) and (2.3.22) with (2.3.18) 
and (2.3.19) refer to a s tat ionary shock normal  to Yl-axis. We may  specify 
(p_0) and (p_) on the r ight-hand side of  the shock, and (p+) or ~: (the 
strength of  the shock) on the left-hand side (Dufay,  1957). The variables 
(p+0) or ~7, u_, u+, are calculated. The quanti ty (p_(p_0)-l) on the left-hand 
side of  the shock is kept  constant.  Figures 9, 10 and 11, show the relations 
(~: versus zi_l), (~/versus ~i_l), and 07+ 1 versus ~7_1), respectively, for  various 
constant  I0. The  linear relation z7_+ 1 versus u+_ for different Io is shown on 
Fig. 12. All curves are similar, but  no a t tempt  was made  to find the center 
o f  similarity. 
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t ' 0  

0.8 

c -15t+ = c  -fu+Io 

Io c-I = 

0.6 Io  

I= Io c-I = O" ~ I 0  c't = 0'85 
L 

0-4. ~ I , , c  '~ = 0 8 0  

0"2 

I f  I I I I 
0 0'2 0 " 4  0"6 0"8 1"0 

c -t u+ 

Figure 12.--c -1 ~• versus c -1 u• for different values of the parameter c -~ Io. 

Figures  9 and  10 seem to indicate  tha t  the shock pa ramete r s  ~: and  ~? 
increase as ~b increases or  Io decreases with ~_l constant .  F o r  fixed ~: and  
~, ~_1 increases as ~b decreases or  Io increases. F igure  11 seems to demons t ra te  
tha t  ~+~ increases as r decreases or  Io increases for  fi+l constant ,  or  vice 
versa. There  appears  in Fig. 11 (s e = seer) a m i n i m u m  the meaning  o f  which 
has never been discussed. 
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